Press release content from BusinessWire. The AP news staff was not involved in its creation.
PRESS RELEASE: Paid content from BusinessWire
Press release content from BusinessWire. The AP news staff was not involved in its creation.

Kinetica Announces Open Source Integration for RAPIDS Software

October 30, 2018 GMT

SAN FRANCISCO, Calif.--(BUSINESS WIRE)--Oct 30, 2018--Kinetica, the engine for the Extreme Data Economy, today announced it is making open source code available to integrate with RAPIDS open source software, a new machine learning training stack introduced by NVIDIA. The combination of RAPIDS and Kinetica allows data scientists and data engineers to reimagine artificial intelligence by exploring, training, visualizing, and integrating machine intelligence into smart analytical applications while leveraging the accelerated computing power of the GPU.

As AI becomes central to enterprise strategies, it is essential to streamline data science and data engineering processes. RAPIDS leverages the power of NVIDIA GPUs to reduce AI model training time from days to minutes. Kinetica combines a GPU database, real-time analytical techniques (location intelligence, time series, text search), and the ability to run analytics and pre-trained machine learning models in-database. Together, RAPIDS and Kinetica provide enterprises with a concrete way to realize the end-to-end impact of AI, whether it be driving cars, stocking warehouses, or making personalized recommendations.

“We’re excited to support Apache Arrow, a core component of accelerated analytics on the GPU. Our latest open source capabilities enable us to seamlessly integrate with RAPIDS across the GPU-powered data ecosystem,” said Nima Negahban, co-founder and CTO of Kinetica. “While NVIDIA drives model development and training, Kinetica drives operationalization and deployment of those models in-database, so enterprises gain maximum insight from their data.”

“Companies are increasingly data-driven, but speed is of the essence to use this data,” said Jeffrey Tseng, head of product for AI Infrastructure at NVIDIA. “With RAPIDS and Kinetica, enterprises can leverage the power of the GPU and advanced analytics across the model development toolchain and dramatically simplify and speed up the data science pipeline.”

The Kinetica integration is based on the Apache Arrow project, enabling Kinetica and RAPIDS to run seamlessly on the GPU and communicate without copying data to the CPU. Kinetica is making the Apache Arrow integration code available to developers via GitHub. Download RAPIDS and Kinetica from the NVIDIA GPU Cloud.

About Kinetica

Kinetica is the insight engine for the Extreme Data Economy. The Kinetica engine combines artificial intelligence and machine learning, data visualization and location-based analytics, and the accelerated computing power of a GPU database across healthcare, energy, telecommunications, retail, and financial services. Kinetica has a rich partner ecosystem, including NVIDIA, Dell, HP, and IBM, and is privately held, backed by leading global venture capital firms Canvas Ventures, Citi Ventures, GreatPoint Ventures, and Meritech Capital Partners. For more information and trial downloads, visit kinetica.com or follow us on LinkedIn and Twitter.


Open Source Github Repository: Kinetica UDF Python API

Technical Blog: Working with RAPIDS Using Kinetica’s pyGDF Open Source API

View source version on businesswire.com:https://www.businesswire.com/news/home/20181030005351/en/

CONTACT: LEWIS Global Communications

Rozeta Andres, 1-415-432-2400




SOURCE: Kinetica

Copyright Business Wire 2018.

PUB: 10/30/2018 09:00 AM/DISC: 10/30/2018 09:01 AM